Data Selection for Vision-Language Models

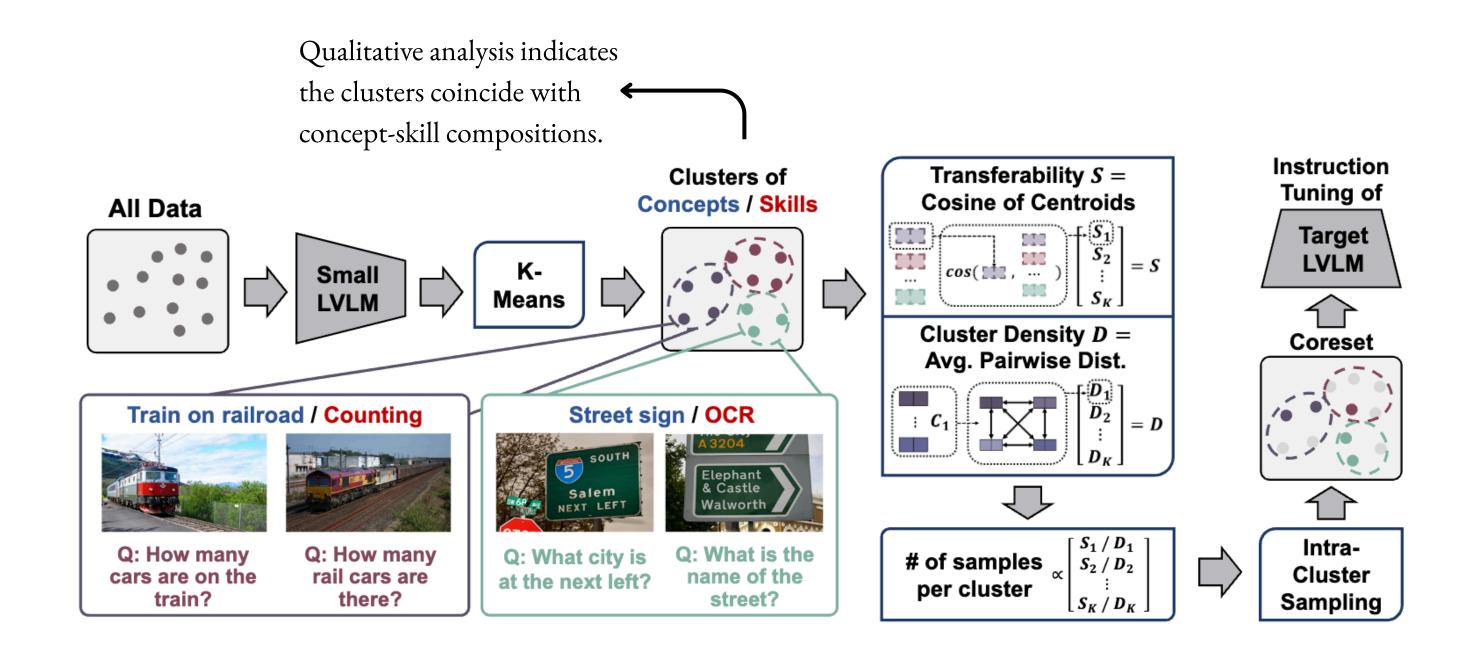
Paper: Concept-skill Transferability-based Data Selection for Large Vision-Language Models (EMNLP 2024).

Motivation

- Finetuning on full VIT datasets is prohibitively expensive for many users'
- Different VL tasks share overlapping concept-skill compositions
- Single-metric selection (e.g., EL2N, Self-Filter) yields biased coresets across tasks with different score distributions, harming diversity

RQ1: How to select a small, diverse, and transferable *coreset* for visual instruction tuning (VIT) of LVLMs to preserve generalization while reducing compute?

RQ1: How to select a small, diverse, and transferable *coreset* for visual instruction tuning (VIT) of LVLMs to preserve generalization while reducing compute?



RQ1: How to select a small, diverse, and transferable *coreset* for visual instruction tuning (VIT) of LVLMs to preserve generalization while reducing compute?

Concept-skill compositions: Combinations of visual-semantic concepts and associated skills (tasks or instructions) that represent meaningful clusters of vision-language data relevant for training.

Hypotheses:

- Neuron activations from a small VLM can cluster VIT data into meaningful concept-skill compositions.
- Allocating more samples to high-transferability and low-density clusters improves efficiency without sacrificing diversity.
- Cluster transferability positively correlates with centroid cosine similarity, enabling a cheap proxy.

Methods

- Multilayer activation features from a small reference VLM (e.g., TinyLLaVA-2B)
- concatenate MSA features across 5 layers

$$egin{split} \left[oldsymbol{z}_{l}^{v},oldsymbol{z}_{l}^{t}
ight] &= \mathrm{MSA}_{l}\left(\mathrm{LN}_{l}\left(\left[oldsymbol{x}_{l}^{v},oldsymbol{x}_{l}^{t}
ight]
ight) + \left[oldsymbol{x}_{l}^{v},oldsymbol{x}_{l}^{t}
ight] \end{split}$$

$$m{u}^v_l = exttt{L2-Normalize}(exttt{MeanPool}(anh(m{z}^v_l))), \ m{u}^t_l = exttt{L2-Normalize}(exttt{MeanPool}(anh(m{z}^t_l))), \ exttt{use tanh}(.) ext{ to avoid activation extremes in LLMs}$$

$$m{u}^m = [m{u}^v_{l_1}, \; m{u}^t_{l_1}, \; \dots, \; m{u}^v_{l_M}, \; m{u}^t_{l_M}] \; / \; \sqrt{2M}$$
 concatenate features from the

concatenate features from the small VLM's layers

• Spherical k-means clustering on u_m with large K (e.g., 10,000) to capture fine-grained concept-skill compositions

Data selection criteria

Clusters closer in activation space transfer better to each other; centroid cosine similarity can proxy transferability.

Transferability proxy S_i: Average cosine similarity between cluster centroid e_i and other centroids.

$$S_i = rac{1}{K_{ ext{tgt}}} \sum_{j=1}^{K_{ ext{tgt}}} \cos(oldsymbol{e}_i, oldsymbol{e}_j),$$

Density measure

- low D_i: diverse
- high D_i: dense

$$D_i = \frac{1}{|C_i|(|C_i| - 1)} \sum_{p,q \in C_i, p \neq q} d(p,q)$$

Cluster-wise allocation probability

$$P_i \propto \exp(S_i/(\tau D_i))$$

Select sample from each cluster

$$N_{\rm core}P_i$$

Intra-cluster selection via greedy MMD minimization

$$MMD^{2} = A(C_{i}, C_{i}) + A(C'_{i}, C'_{i}) - 2A(C_{i}, C'_{i}),$$

$$A(C_{i}, C_{j}) = \frac{1}{|C_{i}||C_{j}|} \sum_{p \in C_{i}, q \in C_{j}} d(p, q). \tag{7}$$

Data selection algorithm

```
Algorithm 1 COINCIDE Data Selection Algorithm
Require: K: the number of clusters, N_{core}: target coreset size
 1: Extract multimodal neuron activations u^m from the full dataset.
                                                                                                                            ⊳ Eq. 3
  2: Cluster u^m into K clusters to form a set of clusters C = \{C_1, C_2, \dots, C_K\}.
  3: Compute cluster transferability S_i = \mathbb{E}_j (\cos(\mathbf{e}_i, \mathbf{e}_j)), i \in \{1, 2, \dots, K\}
                                                                                                                            ⊳ Eq. 5
  4: Compute cluster density D_i = \mathbb{E}_{p,q \sim C_i} (d(p,q)), i \in \{1, 2, \dots, K\}
                                                                                                                            ⊳ Eq. 6
  5: Calculate cluster categorical distribution P_i \propto \exp(S_i/(\tau D_i)).
  6: for i = 1, 2, ..., K do
        i-th cluster empty coreset C'_i.
        i-th cluster target sample size N_{\text{core},i} = N_{\text{core}}P_i.
        while |\mathcal{C}_i'| < N_{\text{core},i} do
           k = \operatorname{argmin} \operatorname{MMD}^{2} (C_{i}, C'_{i} \cup \{j\})
10:
                                                                                                                            ⊳ Eq. 7
                 j\in C_i \setminus C_i'
           C_i' \leftarrow C_i' \cup \{k\}
11:
        end while
13: end for
14: return C'_1 \cup C'_2 \cup \ldots \cup C'_K
```

Experiment Setup

- Reference model: TinyLLaVA-2B (default); also CLIP, TinyLLaVA-0.9B, LLaVA-1.5 7B considered.
- Benchmarks: VQAv2, GQA, VizWiz, SQA-I, TextVQA, POPE, MME, MMBench-en/cn, LLaVA-Bench, MM-Vet.
- Metric: average relative performance (Rel.) vs full finetuning.
- Targets: LLaVA-1.5 7B (default), 13B; LoRA, 1 epoch, 4×V100

• Baselines:

- Random,
- CLIP-Score
- o EL2N
- Perplexity
- SemDeDup
- o D2-Pruning
- Self-Sup
- Self-Filter.

COINCIDE enables efficient VIT with only 16.7–20% data, matching or exceeding full-dataset generalization while reducing wall-clock time by up to ~70%.

Result

- LLaVA-1.5 @20% data: COINCIDE Rel. 97.4% (close to full, best avg.; +1.6 pp over best baseline).
- Strong on 7/10 benchmarks.

Method	VQAv2	GQA	VizWiz	SQA-I	TextVQA	POPE	MME	MMBench		LLaVA-	Rel. (%)
								en	cn	Bench	
Full-Finetune	79.1	63.0	47.8	68.4	58.2	86.4	1476.9	66.1	58.9	67.9	100
Random	75.7	58.9	44.3	68.5	55.3	84.7	1483.0	62.2	54.8	65.0	95.8
CLIP-Score	73.4	51.4	43.0	65.0	54.7	85.3	1331.6	55.2	52.0	66.2	91.2
EL2N	76.2	58.7	43.7	65.5	53.0	84.3	1439.5	53.2	47.4	64.9	92.0
Perplexity	75.8	57.0	<u>47.8</u>	65.1	52.8	82.6	1341.4	52.0	45.8	68.3	91.6
SemDeDup	74.2	54.5	46.9	65.8	<u>55.5</u>	84.7	1376.9	52.2	48.5	70.0	92.6
D2-Pruning	73.0	58.4	41.9	69.3	51.8	85.7	1391.2	65.7	57.6	63.9	94.8
Self-Sup	74.9	59.5	46.0	67.8	49.3	83.5	1335.9	61.4	53.8	63.3	93.4
Self-Filter	73.7	58.3	53.2	61.4	52.9	83.8	1306.2	48.8	45.3	64.9	90.9
COINCIDE (Ours)	76.5	59.8	46.8	<u>69.2</u>	55.6	86.1	1495.6	<u>63.1</u>	54.5	67.3	97.4

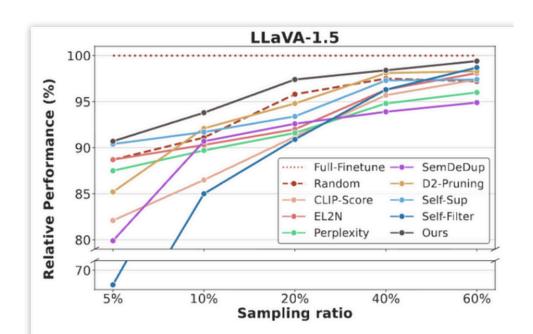


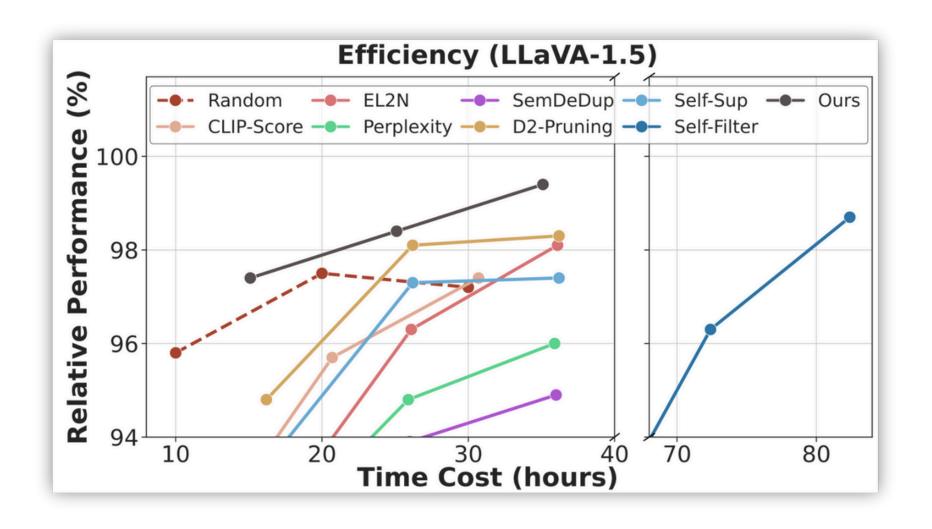
Figure 5: Average relative performances of all coreset selection techniques at different sampling ratios for the LLaVA-1.5 dataset.

Computational analysis

- No backward pass, only a small reference model
- k-means O(NK); cosine matrix $O(K^2)$.

COINCIDE achieves 97.4%, 98.4%, and 99.4% relative performance with the wall-clock times of 15.1, 25.1, and 35.1 hours.

"Finetuning on all data takes 50 hours."



The wall-clock time cost of the entire pipeline of data selection and model finetuning verusus the average relative performance (Rel.) on the LLaVA-1.5 dataset.

Takeaways

- Diversity over concept-skill compositions is crucial for generalization; cluster-wise sampling ensures coverage beyond task-level sampling.
- Centroid cosine as a proxy unlocks cheap, effective transfer-aware allocation across clusters.
- Balancing transferability (S) and redundancy (D) yields efficient learning with fewer samples.
- Small reference models can reliably guide data selection for larger LVLMs.

Concept-skill Transferability-based Data Selection for Large Vision-Language Models

Jaewoo Lee¹ Boyang Li^{†,2} Sung Ju Hwang^{†,1,3}
KAIST¹ Nanyang Technological University, Singapore² DeepAuto³
jwlee8877@gmail.com boyang.li@ntu.edu.sg sjhwang82@kaist.ac.kr

Abstract

Instruction tuning, or supervised finetuning on extensive task-specific data, is necessary for Large Vision-Language Models (LVLMs) to generalize well across a broad range of visionlanguage (VL) tasks. However, training on large VL datasets can become prohibitively expensive. In this work, we introduce COIN-CIDE, an effective and scalable data selection technique that uses a small model as a reference model to select visual instruction tuning data for efficient finetuning of a target LVLM, focusing on diversity and transferability. Specifically, we cluster the training data using internal activations from a small model, which identifies VL concept-skill compositions needed by a target LVLM. We then sample data from

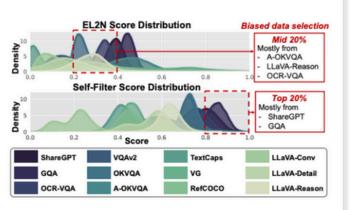


Figure 1: Different VL tasks in LLaVA-1.5 (Liu et al., 2023a) exhibit different score distributions. Thus, selecting data based on a single score metric like EL2N (Paul et al., 2021) or Self-Filter (Chen et al., 2024a) results in a biased coreset (red), substantially decreasing the diversity within the coreset.